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Matrix Theory Approach to Complex Waves

Michal Mrozowski and Jerzy Mazur

Abstract—Complex waves in shielded Iossless inhomogeneous iso-
tropic guides are investigated. A critical appraisal of the existing the-
ory of complex waves is given and new approach is proposed. A math-
ematical condition for the existence of complex waves is derived using
the properties of a generalized symmetric matrix eigenvalue problem.

It is shown that complex waves may exist in slightly perturbed homo-

geneous guides as a result of the coupling of a pair of degenerate or
nearly degenerate modes.

I. INTRODUCTION

Complex waves are the modes guided by shielded lossless guides

which have complex propagation constants despite the lossless na-

ture of the structure. A first theory of complex waves was published

by Chomey as early as in 1961 [7], in a research report devoted to

the properties of waves supported by anisotropic bidirectional

guides. Complex waves do not exist in hollow cylindrical guides

and initially it was believed that lossless shielded uniform dielec-

tric guides can not generally support modes with complex propa-

gation constants [6]. Pioneering work by Clarricoats and coworker8

[14] -[16] proved that complex waves can be excited in a circular

waveguide containing a coaxial dielectric rod. Similar result was

obtained indepeudently by Belyantsev and Gaponov [9] who dis-
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covered complex waves in coupled lines. Since then complex and

backward waves in a circular waveguide containing a dielectric rod

have been the subject of thorough numerical investigations [14]-

[23]. It was established that complex waves may only be excited if

the perrnittivity of the dielectric rod is high enough. It was also

found that a complex wave carries no power and the existence of

complex waves was finally confirmed experimentally [4]. These

detailed studies published now and again in the literature were ac-

companied by theoretical consideration which gave deeper insight

into the nature of complex waves [5], [8].

In the 1980’s the scope of ‘the research into inhomogeneous

guides broadened and complex waves were reported for a variety

of waveguiding structures including dielectric image guide [24]–

[25], microstnp [27], [31], [32] and fin line [10], [31]. An inter-

esting result was obtained by Omar and Schunemann [12], [13]

who proved that although a single complex wave carries no power,

two complex waves forming a pair are not orthogonal with respect

to cross power and consequently a pair as a whole behaves as a

mode below cutoff carrying purely reactive power. It was also found

that in certain structures, “for instance in a rectangular image guide

investigated by Strube and Amdt [24], it is possible to obtain com-

plex waveg even if the perturbation caused by inhomogeneity is

relatively small. The attention which complex waves have received

recently is primarily due to the role which they play in the discon-

tinuity analygis. Investigations have shown that complex waves

constitute an essential part of modal spectrum and their omission

may lead to erroneoug results in certain discontinuity problems [12],

[28] -[31].

The intensive studies into the complex waves resulted in 1987 in

a paper [13] by Omar and Schunemann which was intended as a

general treatment of complex waves. Clmar and Schunemann’s 1987

paper use the approach similar to the one u8ed in Chomey’s 1961

report. In both cases the original boundary value problem was con-

verted into a matrix eigenvalue problem but using slightly different

techniques (It can be shown [33] that the two approaches are iden-

tical for infinite matrix dimensions). Chomey concentrated his work

on the derivation of iutegral relations for complex waves. Omar

and Schunemann proposed using the symmetry of the characteristic

matrix as a criterion for the existence of complex waves. In this

contribution we will show that some of Omar and Schiinemann’s

conclusions are premature and propose a more rigorous approach

to complex waves.

II. MATHEMATICAL FORMULATION

As a departure point for the analysis we shall use the matrix

formulation derived by Omar and Schunemann [13] who investi-

gated a general lossless structure of a uniform waveguide inho-

mogeneously filled with a dielectric whose relative perrnittivity was

a function of transverse coordinates (E, = e,(r)). The fields in the

guide were assumed to have the z dependence in the form e-JPZ,

and expanded in series of normalized longitudinal components of

TM and TE modes existing in the empty wavegttide [1 1], [13]. The

expansion coefficients and the propagation constants of the modes

supported by the loaded guide can be obtained from the following

matrix eigenvalue equation (eq. 12 in [13]):

(1)
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where ~ is the identity matrix T stands for the transposition sign,

/3, ko, A are the unknown propagation constant, the wave number

of the free space (k ~ = wz~oeo) and a real positive constant, re-

spectively while A‘ = A/d, B’ = –j 68 are column vectors

containing expansion coefficients. The elements of the matrices ap-

pearing in the above equation are defined in [13] by the equations

(7). All matrices in (1) are real and have infinite dimensions. Ad-

ditionally the matrices g’, ~k, ~ are symmetric.

Omar and Schiinemann showed that for certain special cases a

general eigenvalue problem given by (1) can be written in a simpler

form. For instance, for modes showing no p dependence supported

by a circular waveguide containing a dielectric rod, equation (1)

becomes (eqs. 29 in [13]):

[(k:l – S _
(0)-’ )@O) ] &l = /32/t@)

— (2)

2 h(0) _ Ah(o)]@) = ~2B(0)
[ko~ = — (3)

where superscript O denotes no variation in the p direction.

The theory of complex waves developed by Omar and Schiine-

mann is based on the investigation of the symmetry of the charac-

teristic matrices in each of the above eigenvalues problems. The

characteristic matrix of the problem (1) is nonsymmetric and hence

its eigenvalues @2can take complex values. For special cases, de-

scribed by the equations (29) and (37) in [13], Omar and Schune-

mann state that the characteristic matrices are symmetric and ac-

cordingly no complex modes may exist. Unfortunately, although

the conclusions formulated by Omar and Schiinemann are appar-

ently true, the reasoning used for their derivation can not be ac-

cepted. For instance first sentence following equation (12) in [13]

reads “The two diagonal submatrices of the characteristic matrix

in (12) are real and symmetric. ” The two diagonal submatrices are

Ah. The latter is symmetric indeed but(k~~ – ~-i)~’and k~~h - _

the former is a product of two symmetric matrices and its symmetry

is ensured only when the component symmetric matrices commute.

Omar and Schiinemann do not investigate if the component mat-

rices appearing in (12), (29), (37) in [131 are commutable. It can

easily be proven that the product ~$ appearing in (37) in [13] is
not sYmmettic because the operation ~$ multiplies each row of the——
symmetric matrix j by a different constant and thus the symmetry

of the resulting ma~rix is lost. Accordingly the reality of the modal

spectrum could not have been inferred from the symmetry of the

characteristic matrix because in most cases discussed in [13], the

characteristic matrix was non symmetric. This proves that the con-

clusions drawn by Omar and Schunemann are premature. Further-

more, the criterion employed by Omar and Schunemann, the asym-

metry of the characteristic matrix, is not subtle enough to

distinguish problems with nonsymmetric matrix can lead to com-

plex waves from those which can not.

Fortunately. in all cases discussed by Omar and Schtinemann,

the characteristic matrix is factorized into a product of two sym-

metric matrices. Consequently, each matrix eigenvalue problem

with nonsymmetric matrix can be transformed to the form

Ag = aJW& (4)— —

with both ~ and ~ being symmetric matrices u = /32 denoting the

eigenvalue~ For i~stance, multiplying the first “row” of(1) by hzeo

[k~~ – ~-1] -‘ (the inversion exists except for modes at cutoff)

and-the second “row” by p. we obtain

[

k*eo B’ —@/.loeoxI

1[ 1

~’— —

–qL@oArT – Ah) B’ko(ki~h _—

[ 1[ 1

h2@gI – J-’]-’ o 4’
= B’

—

o
(5)

po~ ~’

A. The Necessary Condition for the Existence of Complex Waves

Formula (4) describes a symmetric generalized matrix eigen-

value problem. It is a common error to assume that the symmetry

of matrices in a generalized eigenvalue problem implies that the

eigenvalues are real. We shall prove that the symmetry is not

enough.

Each generalized matrix eigenvalue problem can be character-

ized by a pair of matrices (~, ~). Such a pair is called a pencil

[2]. The eigensolutions of a sy~metric pencil have several inter-

esting properties which can be used to derive the condition for the

existence of complex waves.

Let us denote by n,, ~i and uj, Z, two eigensolutions (not neces-

sarily distinct ones) of the pencil (~, ~). Owing to the symmetry

of the pencil the following relation maybe obtained from (4) [33]:

(u, – u;)(@,, ~,)h = O (6)

and for o,, o] # O

(1/0, – l/u; )(~4,, A,)h = o (7)

where (”,. ) ~ denotes the hermitian inner product defined by

(y,z)h:=~”z (8)—

with y, z being arbitrary column vectors and the superscript H de-

notin~ hermitian transposition.

Relations (6) and (7) state that distinct eigenvectors of a sym-

metric pencil (~, @ are M- and A-orthogonal. Forms z !~Z, and

z ~~z, have physical interpretations. For instance it can be shown

[3~ that

(9)

%4X x
4 _-J> –, )h

(11)

Thus the hermitian forms XEMX and Z~~Z, are interpreted as power—1=—1
carried by a mode or energy associate~ with selected field com-

ponents. Using the above identities one may express orthogonality

properties (6) and (7) in terms of integral relations between field

components and derive the relation between backward and complex

waves [33], [34]. Note, that for i = j the hermitian forms Z~~Z,

= (MZ,, 3, )h and &~~Z; = (~~i, &i)k must vanish for any ei-
genvector corresponding to a complex eigenvalue in order for (6)

and (7) to be fulfilled. Hence, the eigenvector z i corresponding to

a complex wave will give

z~~4, = O and ~~~~, = O. (12). —

In physical terms it means that integrals (9)-(11), expressing power

earned by a mode or energy associated with selected field com-

ponent, vanish for complex waves. Hence, the theory of symmetric

pencils gives the result which agrees with earlier observations,
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namely that a complex wave carries no power. If either of the ma-

trices in a pencil is definite the hermitian form ZHMX or z ‘4x is

either positive or negative and consequently no complex eigenval-

ues are allowed.

To sum up we observe that complex eigenvalues may occur only

if both ~ and ~ are indefinite. The indefiniteness of both matrices

in a pe;cil is ‘merely a necessary condition for the existence of

complex eigenvalues. On the other hand the definiteness of at least

one of the matrices in the pencil is a sufficient condition for the

reality of the spectrum.

B. Definiteness of the Pencils Describing Wave Propagation

Let us now investigate the definiteness of the matrices in differ-

ent wave guidance problems. First of all let us observe that the

elements of the matrices ~e, ~h, J and ~c of [13] can be written in

the following generic fofi: – – –

Gnm = ! W(S)f. (S) f~ (S) ds w(s) > 0. (13)
s

these matrices are positive definite [1].

Let us first concentrate on the special cases described by (2)-(3).

Problem (3) has a symmetric characteristic matrix and conse-

quently, as Omar and Schunemann correctly observed no complex

eigenvalues are allowed. Equation (2) has a nonsymmetric char-

acteristic matrix but this problem can be written in the form of a

symmetric pencil with

~ = ,@ – p-] and ~ – &’(o) -[.— — (15)

Since ~’(o) is positive definite then the form Z~IWX, never vanishes

and accordingly complex eigenvalues can not;ccur. As a result

modes with no angular variation supported by a circular waveguide

with a coaxial dielectric rod can not become complex. Similar re-

sult can be obtained for the rectangular waveguide with one di-

mensional inhomogeneity (eqs. 37 in [13]). Here we have two sym-

metric pencil with the matrices ~ = [g]- 1 and ~ = (ZJc) -1 both

being positive definite.

We have demonstrated that for certain types of bounda~ value

problems complex waves can never occur despite the asymmetry

of the characteristic matrix. It now remains to show that in a gen-

eral case both matrices in the pencil are indefinite. We shall use a

theorem which states that a symmetric matrix is positive definite if

and only if all its principal submatrices are positive definite [3].

Let us consider the matrix ~. The principal submatrix &’ is positive

definite. We shall prove that the submatrix k~lJh – ~k contains a

principal submatrix which is negative definite~Note that because

the modes in the basis guide are normalized and e, > 0, the ele-

ments on the main diagonal of matrix ~ k are bounded above:

(16)

where %8X is the maximal value of permittivity of the inhomoge-
neous medium filling the guide. Consequently, as the mode index

n in the submatrix k~~h – Ah increases, the elements on the main

diagonal of the matrix ~h remain bounded while the elements in

the matrix ~~ tend to +=. Therefore, if we pick a sufficiently large

Ah ]~ consisting of allmode index N then the submatrix [k($Rh – _—

but first N modes will become diagonally dominant and will have

negative diagonal elements. According to the Gerschgorin local-

ization theorem [1], a symmetric, diagonally dominant matrix with

negative diagonal elements is negative definite. Hence, the matrix

~ contains both positive and negative definite principal submatrices

;hich means that ~ is indefinite. Similar proof can be given for

matrix ~. Here we~ave a positive definite matrix ~ and a submatrix

[k~~ – Q- ‘]N which becomes negative definite if a-sufficiently large

N is taken.

III. SL16HTLY PERTURBED HOMOGENEOUS GUIDES

A. Sensitivity of Basis Modes with Respect to the Creation of

Complex Waves

We shall now apply the necessary condition for existence of

complex eigenvalues x ~~~ = O to determine which basis modes

are liable to become c;m~lex if an unloaded basis guide supporting

only purely TE and TM modes is perturbed by a slight inhomoge-

neity.

Let the unperturbed system be described by the pencil (~, ~).

Let q, be a simple eigenvalue of the pencil (IV, ~) and z, be—its

associated eigenvector. The spectrum of the pencil (~, ~) is real.

Hence,

&H&f&# o.— (17)

We want now to find out if the complex eigenvalues will occur

when the pencil (~, &f) is perturbed. We will seek an approxi-

mation to the eige;vec~or g of the pencil (~, ~) = (~ + ~, ~)

where ~ is a fixed perturbation.

If w~put c = II~- 1ICll then we have the following estimate [3]:— —

where

The above inequality shows that the eigenvectors corresponding to

poorly separated eigenvalues of unperturbed system are ill condi-

tioned and even a slight perturbation may cause a significant change

in components of the eigenvector g compared with Z. Conversely,

for well separated eigenvalues, the eigenvectors will be only

slightly perturbed by a small inhomogeneity.

Suppose z is normalized so that z ~A4~ = 1. Then, for well sep-

arated eigenvalues of unperturbed pencil, it follows from (18) and

(17) that

The same relation can not be written for the ill conditioned eigen-

vectors Z. Despite a small perturbation we may, in this case, obtain

which is the necessary condition to the occurrence of complex ei-

genvalues.

The eigenvahres of unperturbed pencil correspond to the squares

of the propagation constants of the basis TE and TM modes. Thus,

the degeneracy between basis modes brings about poorly separated

eigenvahres of the pencil (~, ~) and accordingly degenerate basis

modes are particularly prone to become complex when the basis

guide is perturbed by a dielectric insert. Using the physical inter-

pretation of the necessary condition one may prove [33] that van-

ishing of the hermitian form z ‘Jfx may take place only when the

degeneracy occurs between basi~modes of the opposite type i.e.,

TE-TM. Hence, the pairs of the degenerate TE-TM basis modes
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are potentially capable of creating complex waves when a basis

structure is perturbed with a dielectric insert.

The results of the perturbation analysis show that investigating

complex waves excited by a small perturbation we can restrict our-

selves to the analysis of the coupling between a pair of the nearest

TE and TM basis modes. For this case the size of the matrix in (1)

is reduced to 2 and from the resulting characteristic equation one

can obtain the analytical condition for existence the complex waves

[33], [35]. Investigating these conditions one arrives at the conclu-

sion that in a slightly perturbed homogeneous guide a complex wave

occurs as a result of a coupling of the degenerate or nearly degen-

erate cutoff TE-TM basis modes which are not orthogonal in a sense

of the integral

s~.(c, – l)(v, er x V,?SJ “ di * o (22)

where So is the perturbed region.

B. Guide Geometries and Modes Prone to Complex Waves

The degeneracy between basis modes of different type is a crtt-

cial factor in the creation of complex modes in sightly inhomoge-

neous guides. We may therefore assume that the geometries in

which such degeneracies frequently occur will be particularly prone

to complex waves. One example of such a geometry is a rectan-

gular waveguide in which all EE~ modes are degenerate, forming

pairs with the H.m modes. Degeneracies also occur in a circular

waveguide. Here, the degeneracy takes place between Ho~ and El ~

modes. We have shown that the degeneracy is not a sufficient con-

dition. Modes can not be orthogonal in the sense of integral (22).

Because in the circular guide the degenerate modes in one pair have

different angular dependence, the perturbation in the form of a

coaxial rod will not cause the necessary coupling between fields of

basis modes, expressed by (32), and consequently such a configu-

ration will be particularly robust. For offset rods this will no longer

apply.

We can also draw an important practical conclusion regarding

fundamental modes. In homogeneous structures a fundamental

mode is not degenerate unless a guide exhibits certain symmetry;

but then the degeneracy occurs for the modes of the same type,

e.g., HIO and Ho, in a square waveguide. Therefore dominant modes

are intrinsically robust and will not easily yield complex waves.

The same is true for the higher order modes in a rectangular guide

which do not have the counterpart of the opposite type.

Obviously for large perturbations, introduced by high permittiv-

ity dielectrics the approximate hi-mode analysis is invalid because

coupling with other not degenerate modes may prove decisive and

result in the excitation or suppression of a complex wave. Never-

theless even in these cases our theory indicates modes which should

be considered first as candidates for the creation of complex waves.

Because of the limited length of the short paper the verification

of the conclusions regarding complex waves in slightly perturbed

guides is not given in this text. Additional material, including ver-

ification of the conclusions in this paper, approximate formulae for

the complex wave range and the orthogonality relations for com-

plex waves is contained in the conference papers [34], [35].
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