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Matrix Theory Approach to Complex Waves

Michal Mrozowski and Jerzy Mazur

Abstract—Complex waves in shielded lossless inhomogeneous iso-
tropic guides are investigated. A critical appraisal of the existing the-
ory of complex waves is given and new approach is proposed. A math-
ematical condition for the existence of complex waves is derived using
the properties of a generalized symmetric matrix eigenvalue problem.
It is shown that complex waves may exist in slightly perturbed homo-
geneous guides as a result of the coupling of a pair of degenerate or
nearly degenerate modes.

I. INTRODUCTION

Complex waves are the modes guided by shielded lossless guides
which have complex propagation constants despite the lossless na-
ture of the structure. A first theory of complex waves was published
by Chorney as early as in 1961 [7], in a research report devoted to
the properties of waves supported by anisotropic bidirectional
guides. Complex waves do not exist in hollow cylindrical guides
and initially it was believed that lossless shielded uniform dielec-
tric guides can not generally support modes with complex propa-
gation constants [6}. Pioneering work by Clarricoats and coworkers
[14]1-[16] proved that complex waves can be excited in a circular
waveguide containing a coaxial dielectric rod. Similar result was
obtained independently by Belyantsev and Gaponov [9] who dis-
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covered complex waves in coupled lines. Since then complex and
backward waves in a circular waveguide containing a dielectric rod
have been the subject of thorough numerical investigations [14]-
[23]. It was established that complex waves may only be excited if
the permittivity of the dielectric rod is high enough. It was also
found that a complex wave carries no power and the existence of
complex waves was finally confirmed experimentally [4]. These
detailed studies published now and again in the literature were ac-
companied by theoretical consideration which gave deeper insight
into the nature of complex waves [5], [8].

In the 1980’s the scope of the research into inhomogeneous
guides broadened and complex waves were reported for a variety
of waveguiding structures including dielectric image guide [24]-
[25], microstrip [27], [31], [32] and fin line {10}, [31]. An inter-
esting result was obtained by Omar and Schiinemann [12], [13]
who proved that although a single complex wave carries no power,
two complex waves forming a pair are not orthogonal with respect
to cross power and consequently a pair as a whole behaves as a
mode below cutoff carrying purely reactive power. It was also found
that in certain structures, for instance in a rectangular image guide
investigated by Strube and Arndt [24], it is possible to obtain com-
plex waves even if the perturbation caused by inhomogeneity is
relatively small. The attention which complex waves have received
recently is primarily due to the role which they play in the discon-
tinuity analysis. Investigations have shown that complex waves
constitute an essential part of modal spectrum and their omission
may lead to erroneous results in certain discontinuity problems [12],
[28]-[31]. :

The intensive studies into the complex waves tesulted in 1987 in
a paper [13] by Omar and Schiinemann which was intended as a
general treatment of complex waves. Qmar and Schiinemann’s 1987
paper use the approach similar to the one used in Chorney’s 1961
report. In both cases the original boundary value problem was con-
verted into a matrix eigenvalue problem but using slightly different
techniques (It can be shown [33] that the two approaches are iden-
tical for infinite matrix dimensions). Chorney concentrated his work
on the derivation of integral relations for complex waves. Omar
and Schiinemann proposed using the symmetry of the characteristic
matrix as a criterion for the existence of complex waves. In this
contribution we will show that some of Omar and Schiinemann’s
conclusions are premature and propose a more rigorous approach
to complex waves.

II. MATHEMATICAL FORMULATION

As a departure point for the analysis we shall use the matrix
formulation derived by Omar and Schiinemann [13] who investi-
gated a general lossless structure of a uniform waveguide inho-
mogeneously filled with a dielectric whose relative permittivity was
a function of transverse coordinates (e, = ¢,(r)). The fields in the
guide were assumed to have the z dependence in the form ™%,
and expanded in series of normalized longitudinal components of
TM and TE modes existing in the empty waveguide [11], [13]. The
expansion coefficients and the propagation constants of the modes
supported by the loaded guide can be obtained from the following
matrix eigenvalue equation (eq. 12 in [13]):
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where [ is the identity matrix T stands for the transposition sign,
8, ko, N arc the unknown propagation constant, the wave number
of the free space (k§ = w’moeo) and a real positive constant, re-
spectively while A’ = A/ VA, B' = —j VAB are column vectors
containing expansion coefficients. The elements of the matrices ap-
pearing in the above equation are defined in [13] by the equations
(7). All matrices in (1) are real and have infinite dimensions. Ad-
ditionally the matrices R*, R b S are symmetric.

Omar and Schiinemann showed that for certain special cases a
general eigenvalue problem given by (1) can be written in a simpler
forin. For instance, for modes showing no ¢ dependence supported
by a circular waveguide containing a dielectric rod, equation (1)
becomes (eqs. 29 in [13]):

[(3] - SO HR* 147 = 747 @
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where superscript O denotes no variation in the ¢ direction.

The theory of complex waves developed by Omar and Schiine-
mann is based on the investigation of the symmetry of the charac-
teristic matrices in each of the above eigenvalues problems. The
characteristic matrix of the problem (1) is nonsymmetric and hence
its eigenvalues 8° can take complex values. For special cases, de-
scribed by the equations (29) and (37) in [13], Omar and Schiine-
mann state that the characteristic matrices are symmetric and ac-
cordingly no complex modes may exist. Unfortunately, although
the conclusions formulated by Omar and Schiinemann are appar-
ently true, the reasoning used for their derivation can not be ac-
cepted. For instance first sentence following equation (12) in [13]
reads ‘‘The two diagonal submatrices of the characteristic matrix
in (12) are real and symmetric.”” The two diagonal submatrices are
(k(z)! -5 _‘)5‘5 and k%g" - éh. The latter is symmetric indeed but
the former is a product of two symmetric matrices and its symmetry
is ensured only when the component symmetric matrices commuite.
Omar and Schiinemann do not investigate if the component mat-
rices appearing in (12), (29), (37) in [13] are commutable. It can
easily be proven that the product A’S appearing in (37) in [13] is
not symmetric because the operati(ﬁ A’-’g multiplies each row of the
symmetric matrix § by a different constant and thus the symmetry
of the resulting matrix is lost. Accordingly the reality of the modal
spectrum could not have been inferred from the symmetry of the
characteristic matrix because in most cases discussed in [13], the
characteristic matrix was nonsymmetric. This proves that the con-
clusions drawn by Omar and Schiinemann are premature. Further-
more, the criterion employed by Omar and Schiinemann, the asym-
metry of the characteristic matrix, is not subtle enough to
distinguish problems with nonsymmetric matrix can lead to com-
plex waves from those which can not.

Fortunately. in all cases discussed by Omar and Schiinemann,
the characteristic matrix is factorized into a product of two sym-
metric matrices. Consequently, each matrix eigenvalue problem
with nonsymmetric matrix can be transformed to the form

4& = 01‘:4_.& @)

with both 4 and M being symmetric matrices ¢ = % denoting the
eigenvalue. For instance, multiplying the first *‘row”” of (1) by A%¢,
[k31 — S™'17" (the inversion exists except for modes at cutoff)
and the second ‘‘row’’ by pu, we obtain
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A. The Necessary Condition for the Existence of Complex Waves

Formula (4) describes a symmetric generalized matrix eigen-
value problem. It is a common error to assume that the symmetry
of matrices in a generalized eigenvalue problem implies that the
eigenvalues are real. We shall prove that the symmetry is not
enough.

Each generalized matrix eigenvalue problem can be character-
ized by a pair of matrices (4, M). Such a pair is called a pencil
[2]. The eigensolutions of a symmetric pencil have several inter-
esting properties which can be used to derive the condition for the
existence of complex waves.

Let us denote by o,, x, and g, x, two eigensolutions (not neces-
sarily distinct ones) of the pencil (4, M). Owing to the symmetry
of the pencil the following relation—;na;be obtained from (4) [33]:

(6, = o) Mx;, 2,5, = 0 (6)
and forg,, 0, # 0
(1/0, — 1/0/)C A%, £,5% = 0 Q)
where (-}, denotes the hermitian inner product defined by
(y, 20, :=y ®

with y, x being arbitrary column vectors and the superscript H de-
noting hermitian transposition.

Relations (6) and (7) state that distinct eigenvectors of a sym-
metric pencil (4, M) are M- and A-orthogonal. Forms Q,HM)_C , and
,LH;{)_C, have physical interpretations. For instance it can be shown
[33] that
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Thus the hermitian forms ,x,Hgy_c, and xF4 x, are interpreted as power
carried by a mode or energy associated with selected field com-
ponents. Using the above identities one may express orthogonality
properties (6) and (7) in terms of integral relations between field
components and derive the relation between backward and complex
waves [33], [34]. Note, that for i = j the hermitian forms J_c,HML
= (Mx,, x,, and ,g,Hé)_c, = {Ax;, x;), must vanish for any ei-
genvector corresponding to a complex eigenvalue in order for (6)
and (7) to be fulfilled. Hence, the eigenvector x; corresponding to
a complex wave will give

xfdx, =0 and x/Mx, = 0. (12)

In physical terms it means that integrals (9)-(11), expressing power
carried by a mode or energy associated with selected field com-
ponent, vanish for complex waves. Hence, the theory of symmetric
pencils gives the result which agrees with earlier observations,
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namely that a complex wave carries no power. If either of the ma-
trices in a pencil is definite the hermitian form x”Mx or x”Ax is
either positive or negative and consequently no complex exgenval-
ues are allowed.

To sum up we observe that complex eigenvalues may occur only
if both M and A are indefinite. The indefiniteness of both matrices
in a pencil is merely a necessary condition for the existence of
complex eigenvalues. On the other hand the definiteness of at least
one of the matrices in the pencil is a sufficient condition for the
reality of the spectrum.

B. Definiteness of the Pencils Describing Wave Propagation

Let us now investigate the definiteness of the matrices in differ-
ent wave guidance problems. First of all let us observe that the
elements of the matrices R*, R k S and E° of [13] can be written in
the following generic form:

Gnm =

Ss w(s) [, (8) f (5) ds w(s) > 0. (13)

Since

2
)_chg = Ss w(s)<Z x,f,(s)) ds >0 (14)
these matrices are positive definite [1].

Let us first concentrate on the special cases described by (2)-(3).
Problem (3) has a symmetric characteristic matrix and conse-
quently, as Omar and Schiinemann correctly observed no complex
eigenvalues are allowed. Equation (2) has a nonsymmetric char-
acteristic matrix but this problem can be written in the form of a
symmetric pencil with

A=k -S89 and M- R©". (15)

Since R*© is positive definite then the form xMx, never vanishes
and accordingly complex eigenvalues can not occur. As a result
modes with no angular variation supported by a circular waveguide
with a coaxial dielectric rod can not become complex. Similar re-
sult can be obtained for the rectangular waveguide with one di-

mensional inhomogeneity (egs. 37 in [13]). Here we have two sym- .

metric pencil with the matrices M = [ A1 "and M = (F°) ! both
being positive definite. o - - h

We have demonstrated that for certain types of boundary value
problems complex waves can never occur despite the asymmetry
of the characteristic matrix. It now remains to show that in a gen-
eral case both matrices in the pencil are indefinite. We shall use a
theorem which states that a symmetric matrix is positive definite if
and only if all its principal submatrices are positive definite [3].
Let us consider the matrix 4. The principal submatrix R is positive
definite. We shall prove that the submatrix k%gh - éh contains a
principal submatrix which is negative definite. Note that because
the modes in the basis guide are normalized and ¢, > 0, the ele-
ments on the main diagonal of matrix R * are bounded above:

Rhy = 1/, | eVl as

2dS = €max

1
= emax k,znh SS |Vth:'1n (16)
where €, is the maximal value of permittivity of the inhomoge-
neous medium filling the guide. Consequently, as the mode index
n in the submatrix k3R" — A" increases, the elements on the main
diagonal of the matrix R" remain bounded while the elements in
the matrix A" tend to +oo. Therefore, if we pick a sufficiently large
mode index N then the submatrix [k3R" — A1y consisting of all

but first N modes will become diagonally dominant and will have
negative diagonal elements. According to the Gerschgorin local-
ization theorem [1], a symmetric, diagonally dominant matrix with
negative diagonal elements is negative definite. Hence, the matrix
A contains both positive and negative definite principal submatrices
which means that A is indefinite. Similar proof can be given for
matrix M. Here we have a positive definite matrix  and a submatrix
[k3I — S 'y which becomes negative definite if a sufficiently large
N is taken.

III. SLigHTLY PERTURBED HOMOGENEOUS GUIDES

A. Sensitivity of Basis Modes with Respect to the Creation of
Complex Waves

We shall now apply the necessary condition for existence of
complex eigenvalues xHMx = 0 to determine which basis modes
are liable to become complex if an unloaded basis guide supporting
only purely TE and TM modes is perturbed by a slight inhomoge-
neity.

Let the unperturbed system be described by the pencil (W, M).
Let n, be a simple eigenvalue of the pencil (W, M) and J_C_, be its
associated eigenvector. The spectrum of the pé-ﬁcﬂ?ﬂ/, M) is real.
Hence, o

£“Mx # 0. (17)

We want now to find out if the complex eigenvalues will occur
when the pencil (W, M) is perturbed. We will seek an approxi-
mation to the eigenvector £ of the pencil (4, M) = (W + K, M)
where K is a fixed perturbation. T T
If we put ¢ = || M~ K|l then we have the following estimate [3]:

€

”'El - X:” =3 (18)

(2]

where

6 = min |9, — 7. (19)
tF)

The above inequality shows that the eigenvectors corresponding to
poorly separated eigenvalues of unperturbed system are ill condi-
tioned and even a slight perturbation may cause a significant change
in components of the eigenvector £ compared with x. Conversely,
for well separated eigenvalues, the eigenvectors will be only
slightly perturbed by a small inhomogeneity.

Suppose x is normalized so that g”gg = 1. Then, for well sep-
arated eigenvalues of unperturbed pencil, it follows from (18) and
(17) that

Mz ~

x"Mx + 0. (20)

The same relation can not be written for the ill conditioned eigen-
vectors £. Despite a small perturbation we may, in this case, obtain

"Mz =0 @n

which is the necessary condition to the occurrence of complex ei-
genvalues.

The eigenvalues of unperturbed pencil correspond to the squares
of the propagation constants of the basis TE and TM modes. Thus,
the degeneracy between basis modes brings about poorly separated
eigenvalues of the pencil (W, M) and accordingly degenerate basis
modes are particularly prone to become complex when the basis
guide is perturbed by a dielectric insert. Using the physical inter-
pretation of the necessary condition one may prove [33] that van-
ishing of the hermitian form x”]l=43_2 may take place only when the
degeneracy occurs between basis modes of the opposite type i.e.,
TE-TM. Hence, the pairs of the degenerate TE-TM basis modes
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are potentially capable of creating complex waves when a basis
structure is perturbed with a dielectric insert.

The results of the perturbation analysis show that investigating
complex waves excited by a small perturbation we can restrict our-
selves to the analysis of the coupling between a pair of the nearest
TE and TM basis modes. For this case the size of the matrix in (1)
is reduced to 2 and from the resulting characteristic equation one
can obtain the analytical condition for existence the complex waves
1331, [35]. Investigating these conditions one arrives at the conclu-
sion that in a slightly perturbed homogeneous guide a complex wave
occurs as a result of a coupling of the degenerate or nearly degen-
erate cutoff TE-TM basis modes which are not orthogonal in a sense
of the integral

S (e, — D(V,e, X V,h,) - dS # 0 2)
So

where S is the perturbed region.

B. Guide Geometries and Modes Prone to Complex Waves

The degeneracy between basis modes of different type is a cru-
cial factor in the creation of complex modes in sightly inhomoge-
neous guides. We may therefore assume that the geometries in
which such degeneracies frequently occur will be particularly prone
to complex waves. One example of such a geometry is a rectan-
gular waveguide in which all E,,, modes are degenerate, forming
pairs with the H,, modes. Degeneracies also occur in a circular
waveguide. Here, the degeneracy takes place between H,, and E,,,
modes. We have shown that the degeneracy is not a sufficient con-
dition. Modes can not be orthogonal in the sense of integral (22).
Because in the circular guide the degenerate modes in one pair have
different angular dependence, the perturbation in the form of a
coaxial rod will not cause the necessary coupling between fields of
basis modes, expressed by (32), and consequently such a configu-
ration will be particularly robust. For offset rods this will no longer
apply.

We can also draw an important practical conclusion regarding
fundamental modes. In homogeneous structures a fundamental
mode is not degenerate unless a guide exhibits certain symmetry;
but then the degeneracy occurs for the modes of the same type,
e.g., Hypand Hy, in a square waveguide. Therefore dominant modes
are intrinsically robust and will not easily yield complex waves.
The same is true for the higher order modes in a rectangular guide
which do not have the counterpart of the opposite type.

Obviously for large perturbations, introduced by high permittiv-
ity dielectrics the approximate bi-mode analysis is invalid because
coupling with other not degenerate modes may prove decisive and
result in the excitation or suppression of a complex wave. Never-
theless even in these cases our theory indicates modes which should
be considered first as candidates for the creation of complex waves.

Because of the limited length of the short paper the verification
of the conclusions regarding complex waves in slightly perturbed
guides is not given in this text. Additional material, including ver-
ification of the conclusions in this paper, approximate formulae for
the complex wave range and the orthogonality relations for com-
plex waves is contained in the conference papers {34}, [35].
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